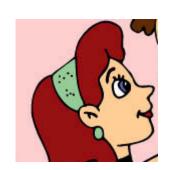
## 6.1 Types of Chemical Reactions: Synthesis



- Synthesis reactions are also known as formation reactions.
  - Two or more reactants (usually elements) join to form a compound.
  - A + B → AB where A and B represent elements
  - The elements may form ionic compounds, like the following:
  - Sodium metal and chlorine gas combine to form sodium chloride.
  - $2Na + Cl_2 \rightarrow 2NaCl$
  - Magnesium metal reacts with oxygen gas to form magnesium oxide.
  - $2Mg + O_2 \rightarrow 2MgO$



- Or the elements may form covalent compounds, like the following:
- Nitrogen gas and oxygen gas join to form dinitrogen monoxide.
- $2N_2 + O_2 \rightarrow 2N_2O$

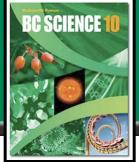





#### An Analogy for Synthesis




- Guy meets girl, they become a couple ;)
- (or, assuming that in this example that the girl represents a metal and the guy represents a non-metal, it could be a covalent bond with two guys ☺)

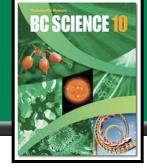




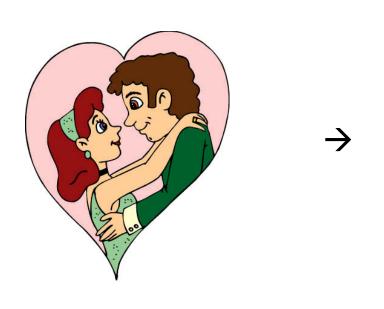


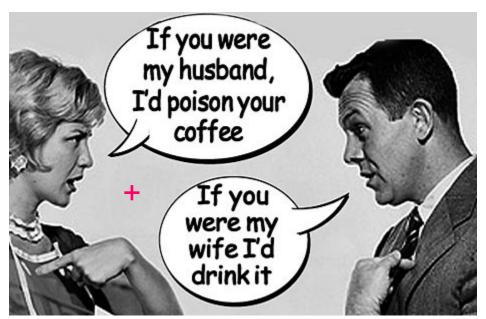



## Types of Chemical Reactions: Decomposition

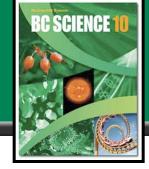



- Decomposition reactions are the opposite of synthesis reactions.
  - A compounds breaks down into two or more products (often elements).
  - AB → A + B where A and B represent elements
  - lonic compounds may decompose to produce elements, like the following:
  - Table salt, sodium chloride, can be broken down into sodium metal and chlorine gas by melting salt at 800°C and running electricity through it.
  - $2NaCl \rightarrow 2Na + Cl_2$
  - Or covalent compounds may decompose into elements, like the following:
  - By running electricity through water, the water molecules decompose into hydrogen and oxygen gases.
  - $2H_2O \rightarrow 2H_2 + O_2$



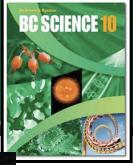


See page 260

#### An Analogy for Decomposition




Couple breaks up ⊗






## Types of Chemical Reactions: Single Replacement



- Single replacement reactions replace one element from a compound with a separate element added as a reactant.
  - A compound and an element react, and the element switches places with part of the original compound.
    - B + AX → A + BX where A and B are metals, or
    - Y + AX → X + AY where X and Y are non-metal
  - Replacement of a metal:
  - Aluminum foil in a solution of copper(II) chloride produces solid copper and aluminum chloride.
  - $2Al + 3CuCl_2 \rightarrow 3Cu + 2AlCl_3$
  - Replacement of a non-metal:
  - When fluorine is bubbled through a sodium iodide solution, iodine and sodium fluoride are produced.
  - $Fl_2 + 2NaI \rightarrow I_2 + 2NaF$

### An Analogy for Single Replacement Reactions





1 partner decides to ditch their current partner for someone new :O









www.ноиеретесоміс.сом raw Hill Ryerson 2007

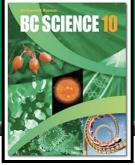
## Types of Chemical Reactions: Double Replacement



- Double replacement reactions swap elements between two
  compounds reacting together to form two new compounds.
  - Two compounds react, with elements switching places between the original compounds.
  - Two solutions react to form a precipitate (ppt, solid) and another solution
    - Ionic solution + ionic solution → ionic solution + ionic solid
    - $AB + CD \rightarrow AD + CB$
  - When potassium chromate and silver nitrate react, they form a red precipitate, silver chromate, in a solution of potassium nitrate.
  - $K_2CrO_4 + 2AgNO_3 \rightarrow Ag_2CrO_4 + 2KNO_3$

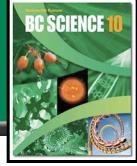


silver chromate


#### An Analogy for Double Replacement



- Start with two couples, and they both switch partners
  - Swingers! :P

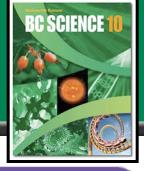



### Types of Chemical Reactions: Neutralization (Acid-Base Reactions)



- Neutralization reactions occur when an acid (most compounds starting with H) and a base (most compounds ending in OH, or beginning with NH₄) react to form a salt and water.
  - Acid + base → salt + water
  - HX + MOH → MX + H<sub>2</sub>O where X is a non-metal ion and M is a metal ion
  - Sulfuric acid is used to neutralize calcium hydroxide:
  - $H_2SO_4 + Ca(OH)_2 \rightarrow CaSO_4 + 2H_2O$
  - Phosphoric acid helps to neutralize the compounds that cause rust, such as iron(II) hydroxide.
  - $2H_3PO_4 + 3Fe(OH)_2 \rightarrow Fe_3(PO_4)_2 + 6H_2O$
- Neutralization is just a special case of a double replacement reaction

### Types of Chemical Reactions: Combustion




- Combustion reactions occur when a compound or element react with oxygen to release energy and produce an oxide.
  - Also sometimes referred to as hydrocarbon combustion.
  - $C_XH_Y + O_2 \rightarrow CO_2 + H_2O$  where X and Y represent whole numbers
  - Natural gas (methane) is burned in furnaces to heat homes.
  - $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
  - An acetylene torch is used to weld metals together.
  - $2C_2H_2 + 5O_2 \rightarrow 4CO_2 + 2H_2O$
  - Carbohydrates like glucose combine with oxygen in our body to release energy.
  - $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$



See page 264

# Types of Chemical Reactions: Summary of Types



#### Table 6.1 Summary of Chemical Reactions

| Reaction Type              | Reactants and Products                 | Notes on the Reactants                             |
|----------------------------|----------------------------------------|----------------------------------------------------|
| Synthesis (combination)    | A + B → AB                             | • Two elements combine (Figure 6.9).               |
| Decomposition              | AB → A + B                             | <ul> <li>One reactant only (Figure 6.9)</li> </ul> |
| Single replacement         |                                        |                                                    |
| If A is a metal            | A + BC → B + AC                        | One element and one compound                       |
| If A is a non-metal        | A + BC → C + BA                        |                                                    |
| Double replacement         | AB + CD → AD + CB                      | Two compounds react.                               |
| Neutralization (acid-base) | HX + MOH → MX + H <sub>2</sub> O       | Acid plus base                                     |
| Combustion                 | $C_XH_Y + O_2 \rightarrow CO_2 + H_2O$ | Organic compound with oxygen                       |

See page 265