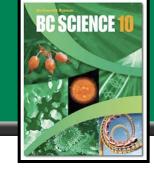

5.1 Acids and Bases

BC SCIENCE 10

- Many familiar compounds are acids or bases.
 - Classification as acids or bases is based on chemical composition.
- Acids and bases can be very dangerous.
 - Both can be very corrosive.
 - NEVER try to identify an acid or base by taste or touch!

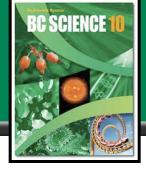
• The strength of acids and bases in measured on the pH scale.

- pH below 7 = acidic, pH above 7 = basic, pH 7 = neutral
- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14


Acids Neutral Bases

- Each decrease of 1 on the pH scale indicates 10× more acidic
 - For example, pH 4 is 10 times more acidic than pH 5.
 - pH 3 is 1000 times more acidic than pH 6.

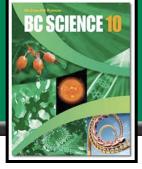
See pages 223 - 224


- The pH of acids and bases cannot be determined by sight.
 - Instead, pH is measured by other chemicals called indicators or by a pH meter that measures the electrical conductivity of the solution.
- pH indicators change colour based on the solution they are placed in.
 - Litmus is the most common indicator, and is used on litmus paper.
 - Two colours of litmus paper: Blue = basic and Red = acidic.
 - Blue = pH above 7, Red = pH below 7.
 - Universal indicator contains many indicators that turn different colours at different pH values (can be in liquid form, or on paper strips like litmus).
 - A pH meter uses electrical probes to measure how solutions conduct electricity.
 - Indicators change colour at different pH values, so different indicators are used to identify different pH values.
 - Bromothymol blue for pH 6 7.6, phenolphthalein for pH 8.2 10.
 - Many natural sources, such as beets and cabbage, are also indicators.

pH Indicators

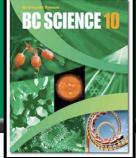
- If you know a compound's chemical formula, you may be able to identify whether it as an acid.
 - Acids often behave like acids only when dissolved in water.
 - Therefore, acids often are written with symbol (aq) = aqueous = water.
- The chemical formula of an acid usually starts with hydrogen (H).
 - Acids with a carbon usually have the C written first.
 - HCI_(aq) = hydrochloric acid, HNO_{3(aq)} = nitric acid, CH₃COOH_(aq) = acetic acid
- Classifying acids:
 - Binary Acids usually contain only two elements
 - E.g. HF
 - Oxy Acids contain oxygen as part of a polyatomic ion
 - E.g. H₂SO₄

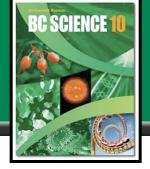
Sulfuric acid is used in batteries.

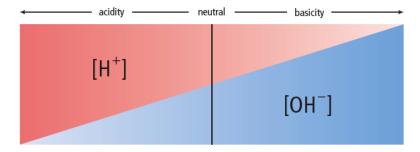

See pages 225 - 226

(c) McGraw Hill Ryerson 2007

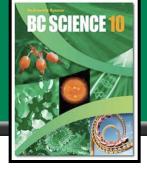
Naming Acids

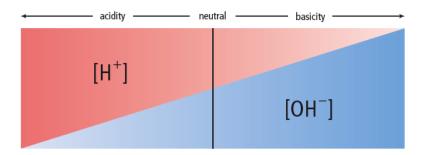

- Naming Binary Acids
 - Hydrogen + ...-ide = hydro...ic acid
 - HF_(aq) = hydrogen fluoride = hydrofluoric acid
- Try: Write the name or the formula of the acids listed below:
 - HCI
 - HI
 - HCN
 - Hydrobromic Acid


- Naming Oxy Acids
 - Hydrogen + ...-ate = ...ic acid
 - H₂CO_{3(aq)} = hydrogen carbonate = carbonic acid
 - Hydrogen + ...-ite = ...ous acid
 - H₂SO_{3(aq)} = hydrogen sulphite = sulphurous acid
- Try: Write the name or the formula of the acids listed below:
 - H_2SO_4
 - HNO₃
 - HNO₂
 - Phosphoric acid
 - Chlorous acid



- If you know a compound's chemical formula, you may be able to identify it as a base.
 - Bases often behave like bases only when dissolved in water.
 - Therefore, bases are often written with the symbol (aq) = aqueous = water.
- The chemical formula of a base usually ends with hydroxide (OH).
- Bases can be gentle or very caustic.
- Examples of common bases:
 - NaOH_(aq)
 - Mg(OH)_{2(aq)}
 - Ca(OH)_{2(aq)}
 - NH₄OH_(aq)




- Acids and bases can conduct electricity because they release ions in solution.
 - Acids release hydrogen ions, H⁺.
 - Bases release hydroxide ions OH⁻.

See page 228

- The pH of a solution refers to the concentration of ions it has.
 - Square brackets are used to signify concentration, [H⁺], [OH⁻]
 - High [H⁺] = low pH, very acidic
 - High [OH⁻] = high pH, very basic
 - A solution cannot have BOTH high [H⁺] and [OH⁻]; they cancel each other out and form water. This process is called neutralization.
 - $H^+ + OH^- \rightarrow H_2O$

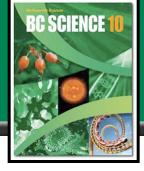

Properties of Acids and Bases

Table 5.6 Properties of Acids and Bases		
Property	Acid	Base
Taste CAUTION: Never taste chemicals in the laboratory.	 Acids taste sour. Lemons, limes, and vinegar are common examples. 	 Bases taste bitter. The quinine in tonic water is one example.
Touch CAUTION: Never touch chemicals in the laboratory with your bare skin.	 Many acids will burn your skin. Sulfuric acid (battery acid) is one example. 	 Bases feel slippery. Many bases will burn your skin. Sodium hydroxide (lye) is one example.
Indicator tests	 Acids turn blue litmus paper red. 	 Bases turn red litmus blue.
	 Phenolphthalein is colourless in an acidic solution. 	 Phenolphthalein is colourless in slightly basic solutions and pink in moderate to strongly basic solutions.
Reaction with some metals, such as magnesium or zinc	 Acids corrode metals. 	No reaction
Electrical conductivity	Conductive	Conductive
рН	Less than 7	More than 7
Production of ions	 Acids form hydrogen (H⁺) ions when dissolved in solution. 	 Bases form hydroxide (OH⁻) ions when dissolved in solution.

Take the Section 5.1 Quiz

See page 229

(c) McGraw Hill Ryerson 2007

